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2Institut für Strömungsmechanik, Bunsenstraße 10, D-37073 Göttingen, Germany

3FFA, Box 11021, S-16111 Bromma, Sweden

(Received 5 January 1998 and in revised form 20 January 1999)

A transition scenario initiated by two oblique waves is studied in an incompress-
ible boundary layer. Hot-wire measurements and flow visualizations from the first
boundary layer experiment on this scenario are reported. The experimental results are
compared with spatial direct numerical simulations and good qualitative agreement
is found. Also, quantitative agreement is found when the experimental device for
disturbance generation is closely modelled in the simulations and pressure gradient
effects taken into account. The oblique waves are found to interact nonlinearly to
force streamwise vortices. The vortices in turn produce growing streamwise streaks
by non-modal linear growth mechanisms. This has previously been observed in
channel flows and calculations of both compressible and incompressible boundary
layers. The flow structures observed at the late stage of oblique transition have
many similarities to the corresponding ones of K- and H-type transition, for which
two-dimensional Tollmien–Schlichting waves are the starting point. However, two-
dimensional Tollmien–Schlichting waves are usually not initiated or observed in
oblique transition and consequently the similarities are due to the oblique waves and
streamwise streaks appearing in all three scenarios.

1. Introduction
1.1. Tollmien–Schlichting waves

Transition from laminar to turbulent flow in viscous boundary layers is of great
practical interest and is far from understood. One possible route to transition that
has been observed in low-noise environments starts with the secondary instability
of unstable Tollmien–Schlichting (TS) waves. The majority of the research efforts
on laminar–turbulent transition has been focused on this scenario. Its first stage,
or primary instability, is the growth of two-dimensional TS-waves and can be pre-
dicted by solving the Orr–Sommerfeld equation for exponential instabilities. The
two-dimensional state has been found to develop into one of two three-dimensional
states, then to turbulence. Herbert (1983a,b) found that the two three-dimensional
states were caused by secondary instabilities of the two-dimensional state. These occur
if the amplitude of the two-dimensional TS-wave is above a given threshold. One
of the three-dimensional states was observed experimentally by Klebanoff, Tidstrom
& Sargent (1962) and is called K-type or fundamental breakdown. The other was
first observed by Kachanov, Kozlov & Levchenko (1977) and goes under the names
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H-type or subharmonic breakdown. Kachanov (1994) calls it N-type transition in his
review of the physical mechanisms involved in transition. A review of the theoretical
efforts concerning the secondary instabilities has been written by Herbert (1988).
Kleiser & Zang (1991) have reviewed the numerical work in the area. Details of these
scenarios are presented in § 4, where the results on oblique transition presented here
are discussed in the light of previous findings.

1.2. Non-modal growth

Before the 1940s experimental investigators were unable to identify TS-waves and
the subsequent secondary instability in either boundary layers or channel flows.
Transition was instead thought to be caused by other disturbances and other growth
mechanisms. These are obviously as likely now as they were then. Morkovin (1969)
stated ‘We can bypass the TS-mechanism altogether’, and transition caused by growth
mechanisms other than exponential instabilities is often denoted bypass-transition.
The growth mechanisms behind bypass transition can be found by examining the
linearized Navier–Stokes equations. Since the nonlinear terms are conservative in the
Navier–Stokes equations they cannot by themselves be responsible for production of
disturbance energy. In fact, considering the evolution equation for the total disturbance
energy, the so called Reynolds–Orr equation, all of the nonlinear terms drop out,
implying that the instantaneous growth rate is independent of the disturbance energy
(see e.g. Joseph 1976; Henningson 1996).

The existence of growth mechanisms other than those associated with exponential
growth were known already to Orr (1907) and Kelvin (1887), but the investigations
by Gustavsson (1991), Butler & Farell (1992), Reddy & Henningson (1993), Trefethen
et al. (1993) showing the possible magnitude of non-modal growth, clearly indicated
their potential for causing transition.

In order to briefly discuss the concept of non-modal transient growth and relate it
to the mathematical characteristics of the governing equations we will consider the
linear disturbance equations Fourier transformed in the wall-parallel directions. We
have

dû

dt
=Lû(t), û(0) = û0, (1.1)

where L is the linearized Navier–Stokes operator around a parallel mean flow and
û the Fourier-transformed disturbance flow vector u. The solution can be written
û(t) = exp(tL)û0 and the maximum growth experienced at time t as

max
û0

‖û(t)‖
‖û0‖ =‖ exp (tL) ‖ . (1.2)

The norm is here taken as the disturbance energy integrated over the wall-normal
direction

‖ û(t) ‖=
(∫
|û(y, t)|2dy

)1/2

. (1.3)

It is possible to obtain a bound on the maximum growth of the following form:

exp (Re{λmax}) 6 ‖ exp (tL)‖ 6 κ exp (Re{λmax}). (1.4)

The constant κ can be thought of as the condition number of the ‘matrix of eigenvec-
tors’, a concept that can be generalized to infinite-dimensional operators (Trefethen
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1997). If L were a normal operator or equivalently if all of its eigenfunctions
were orthogonal, this condition number would be unity, i.e. κ = 1. For streamwise-
independent disturbances or streaks, which experience the largest non-modal growth,
it can be shown that κ = O(R) (S. C. Reddy, private communication), where R is
the Reynolds number based on a suitable boundary layer thickness. The physical
mechanism behind this growth is the lift-up effect (Landahl 1975). Weak streamwise
counter-rotating vortices in the shear layer can lift up fluid with low streamwise
velocity from the wall and bring high-speed fluid down towards the wall. This will
create streaks of large amplitude in the streamwise velocity component. In the inviscid
case the corresponding perturbation amplitude grows linearly with time, something
recognized by Ellingsen & Palm (1975).

Another consequence of a non-normal operator is that the corresponding linear
system may show a large response to forcing, although the forcing is not at a resonance
condition. Let us consider the linear problem above, driven by a real frequency ω
and an arbitrary forcing function v̂

dû

dt
=Lû(t) + eiωtv̂(x, y, z); (1.5)

the time asymptotic response is given by

û(t) = eiωt(iωI −L)−1v̂. (1.6)

The response is given by the resolvent (iωI −L)−1, which can be given the following
bound:

1

|λ− iω| 6 ‖(iωI −L)−1‖ 6 κ

|λ− iω| , (1.7)

where |λ − iω| represents the closest distance between iω and the spectrum of L
(Trefethen 1993; Kreiss, Lundbladh & Henningson 1994). For streamwise-independent
disturbances the distance between ω and the closest eigenvalue toL is O(1/R) , which
together with the size of the condition number κ implies that the response is bounded
by O(R2). A summary of results on optimal transient growth and optimal forcing,
from several shear flows, is found in table 1.

In most of the theoretical work on non-modal growth a temporal formulation
has been used. The disturbances are then thought to grow in time, which simplifies
analysis and calculations. In a physical experiment or a spatial simulation, however,
disturbances grow in space. Recently non-modal growth in boundary layers has been
considered in spatial formulations by Luchini (1996) and Andersson, Berggren &
Henningson (1997, 1999). They found in their analyses that the maximum possible
energy growth scales linearly with the distance from the leading edge.

The possibilities of strong growth discussed above suggest that transition can occur
even when no exponential instabilities exist. In cases where exponential instabilities
are present, there will be a competition between or combination of the different
mechanisms depending on the disturbances present. And obviously the nonlinear
coupling between different disturbances will play an important role, as well. The
non-modal growth of streamwise streaks is just the first step of transition. The
possibility of a subsequent secondary instability of streaks and growth of three-
dimensional disturbances has been investigated by Reddy et al. (1998) for channel
flows. They found that streak breakdown is caused by an inflectional secondary
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Flow Quantity Value α β

Couette max resonance supω∈R ‖(ωI −L)−1‖ (R/8.12)2 0 1.18

max growth supt>0 ‖ exp (−itL)‖ R/29.1 35.7/R 1.60

Poiseuille max resonance supω∈R ‖(ωI −L)−1‖ (R/17.4)2 0 1.62

max growth supt>0 ‖ exp (−itL)‖ R/71.5 0 2.04

Blasius max resonance supω∈R ‖(ωI −L)−1‖ (R/1.83)2 0 0.21

max growth supt>0 ‖ exp (−itL)‖ R/25.7 0 0.65

Table 1. Maximum resonance and transient growth for selected shear flows and the corresponding
streamwise α and spanwise β wavenumber. For Couette and Poiseuille flow the half channel width
and the centreline velocity are used to make the quantities non-dimensional and for Blasius flow
the displacement thickness and the free-stream velocity have that role. The values are taken from
Trefethen et al. (1993), Butler & Farrell (1992) and P. J. Schmid (private communication).

instability, normally in the spanwise direction but for some cases in the wall-normal
direction.

1.3. Oblique transition

Oblique transition is a transition scenario initiated by two oblique waves with opposite
wave angle. We call these the (1,±1) modes, where the first 1 stands for the gener-
ated fundamental frequency in the spatial cases and for the fundamental streamwise
wavenumber in the temporal cases. The second 1 stands for the fundamental spanwise
wavenumber. Lu & Henningson (1990) first noted the growth potential of oblique
disturbances in incompressible Poiseuille flow. Schmid & Henningson (1992) calcu-
lated oblique transition in channel flow using a temporal direct numerical simulation
(DNS) code. They showed, for plane Poiseuille flow, that initial forcing and subse-
quent non-modal growth caused the rapid growth of the (0, 2) mode. They calculated
the relation between the energy transferred to the (0, 2) mode by the nonlinear terms
and the energy growth by non-modal linear mechanisms and found the latter to be
the significant part. Joslin, Streett & Chang (1992, 1993) calculated oblique transition
in an incompressible boundary layer using both parabolized stability equations (PSE)
and spatial DNS. They chose two different amplitudes of the oblique waves. In the
low-amplitude case the (0, 2) mode grew rapidly and then decayed whereas they noted
both the rapid growth of the (0, 2) mode and a subsequent growth of other modes in
the high-amplitude case. Berlin, Lundbladh & Henningson (1994) chose the param-
eters of the oblique waves to avoid any exponential instability in their spatial DNS
calculation. They pointed out that the rapid non-modal growth of the (0, 2) mode was
associated with high- and low-speed streaks in the streamwise velocity component
and conjectured that the onset of the growth of time-dependent modes was caused
by secondary instability of the streaks when these reached a threshold value. For
channel flow Reddy et al. (1998) found that the energy needed to initiate oblique
transition is substantially lower than that needed in the transition scenarios caused
by the two-dimensional TS-wave. Similar results have also been found in boundary
layer flow by Schmid, Reddy & Henningson (1996).

Oblique transition has also been studied in compressible flows, where it is interesting
to note that oblique modes are the linearly most unstable. Fasel & Thumm (1991)
noted that oblique transition is a ‘powerful process’. Using nonlinear PSE Chang &
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Malik (1992, 1994) studied this scenario in a supersonic boundary layer and found
oblique-wave breakdown to be a more viable route to transition and that it could
be initiated by lower amplitude disturbances, compared to traditional secondary
instability. Using DNS Fasel, Thumm & Bestek (1993) and Sandham, Adams &
Kleiser (1994) studied oblique transition in compressible boundary layers and all
investigators observed first the nonlinear interaction of the oblique waves generating
the streamwise vortex mode (0, 2) and then its rapid growth. The fact that the
rapid growth of the (0, 2) mode was caused by the non-normality of the linear
operator discussed above was shown by Hanifi, Schmid & Henningson (1996) who
also uncovered a compressible version of the inviscid algebraic instability (Hanifi &
Henningson 1998).

The findings on transition mentioned above were all based on calculations. Exper-
imentally, oblique transition has been investigated in Poiseuille flow by Elofsson &
Alfredsson (1998) and by Wiegel (1996) and Elofsson (1998) in zero-pressure-gradient
boundary layers. In the present investigation of oblique transition further details have
been studied using both data from the experiments by Wiegel (1996) and numerical
simulations. A similar comparison between experiment and simulation has been done
for plane Poiseuille flow by Elofsson & Lundbladh (1994).

The tools used in the physical and numerical experiments are covered in § 2. Section
2.1 contains a description of the experimental set-up and the measurement techniques
adopted for the present experiment and § 2.2 the numerical method. Results from
experiments and simulations are compared in § 3 to explain the different stages of
oblique transition. Oblique transition is compared to K- and H-type transition in § 4
and the reason for the similarities of the structures observed at the late transition
stage are discussed. Concluding remarks are given in § 5.

2. Investigational tools
2.1. Experimental method

2.1.1. Experimental set-up and measurement technique

The experimental investigation was performed in the low-turbulence wind tunnel
(TUG) at DLR Göttingen. It is an open wind tunnel with the fan at the inlet. A
honeycomb and turbulence damping screens damp the turbulence level together with
a plane 16 : 1 contraction to 0.065% for the wind speed of U∞ = 12 m s−1 that was
used.

The measurements were performed on a flat Plexiglas plate 1500 mm wide, 1175 mm
long and 40 mm thick, which was mounted vertically in the test section. The plate had
an elliptic leading edge and a flap at the trailing edge. The device used to generate
controlled three-dimensional disturbances is displayed in figure 1. It was situated
206 mm downstream of the leading edge and consisted of 40 slots, 10 mm wide and
0.3 mm in the streamwise direction, placed beneath each other with a spacing of
0.5 mm in the spanwise direction. Each slot led to a pressure chamber inside the
plate, in which pressure fluctuations from a loudspeaker were introduced through
a plastic tube. We make use of the effect that small periodic pressure oscillations
produced by the loudspeakers cause small periodic velocity fluctuations which can be
used for a well-defined excitation of the boundary layer. A signal generator with 20
channels followed by amplifiers supplied the excitation signals for the loudspeakers.
It was possible to address each loudspeaker separately; however, all channels were
phase-locked. By prescribing the phase shift between the channels one or two oblique
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Figure 1. Device for disturbance generation. Note that the distance to the virtual leading edge is
20 mm less than the distance to the actual leading edge given in the figure.

waves could be generated. More details of the set-up and the excitation device can
be found in Wiegel (1996).

Detailed measurements were then made by both hot-wire anemometry and particle
image velocimetry (PIV). Flow visualizations gave a good overview of the transition
scenario and were useful for choosing suitable spanwise wavelength, frequency and
amplitude for the oblique waves. For PIV measurements and flow visualizations a
laser system created a light sheet, which was aligned parallel to the surface of the
plate and could be manually scanned through the boundary layer. The light sheet was
0.6 mm thick and illuminated tracer particles in the observation area stroboscopically
with a repetition rate of 10 Hz. Each illumination actually consisted of two light
pulses with a duration of 20 ns. The time delay between the two pulses could be
varied in a wide range but for our set-up it was chosen as 100 µs. The mean diameter
of the tracer particles in the flow was approximately 1 µm and the seeding rake was
located upstream of the turbulence damping screens. The pictures could be recorded
with a CCD camera or with a standard 35 mm camera. The recorded area was of the
order of 0.2 m by 0.1 m. The signal of the CCD camera was digitized by means of a
frame grabber. The frame grabber, or the shutter release of the 35 mm camera, and
the laser light pulse, were triggered by the signal generator for the excitation, so that
a fixed phase relation between excitation and recorded picture was guaranteed. It was
also possible to set an additional phase shift to acquire pictures at various phases
over one period. The uncertainty of the velocity readings produced by the evaluation
procedure used is well below 1% of the mean flow velocity.

A three-axis traversing system was used for single hot-wire sensors. The traversing
mechanisms were driven by computer-controlled stepper motors with a wall-normal
resolution of 0.001 mm and a spanwise resolution of 0.01 mm. Velocity, temperature,
and dynamic pressure data were directly digitized through a 12-bit A/D converter.
The fluctuating velocities at the desired frequency were filtered in a 1 Hz bandpass
by computing the autospectral density function using an FFT. The cross-spectrum
between the hot-wire signal and the forcing signal of the signal generator provided
phase information.
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2.1.2. Flow quality and wave parameters

The flap at the trailing edge of the plate was adjusted to achieve as close to a
zero-pressure-gradient boundary layer in the measurement region as possible. The
measured pressure gradient is presented in figure 2 and the scatter of order 0.001
in the experimental data around the fit is probably due to low-frequency velocity
fluctuations. For comparison the predicted pressure gradient from a boundary layer
calculation is presented. The boundary layer program (Rotta 1971) accounts for the
shape of the leading edge but not the walls of the wind tunnel and the flap. It takes
the pressure distribution from a potential flow solution as in data. As the boundary
layer develops under a pressure gradient around the leading edge the boundary layer
thickness at a certain downstream coordinate will differ from that of a theoretical
Blasius boundary layer. Therefore a virtual leading edge is calculated from the actual
displacement thickness in the measurement region to fit a theoretical leading edge.
This is situated 20 mm downstream of the real leading edge and we will from now on
refer all downstream distances to the virtual leading edge both in the experimental and
numerical results presented. All wall-normal coordinates y will either be normalized by
the Blasius reference length δr = (νx/U2∞)1/2 at the local x or be given in millimetres.
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Figure 3 displays the velocity profiles achieved in the measurement section as well as
the downstream development of the displacement thickness. This figure also shows
that we can assume a Blasius boundary layer downstream of the excitation. The
spanwise spectra of the undisturbed mean flow of both the free stream and boundary
layer were checked to make sure that there were no peaks at the spanwise wavelengths
excited later in the experiment.

The excitation device introduces locally a wall-normal velocity but the goal is to
have controlled oblique eigenmodes moving downstream. Therefore the calibration of
the excitation is based on measuring the disturbance level inside the boundary layer
downstream of the excitation. Setting the same phase of the excitation signal for all
40 slots a two-dimensional wave was generated, which made it possible to check that
the amplitude was evenly distributed in the spanwise direction. The frequency of the
generated oblique waves was 90 Hz corresponding to a non-dimensional frequency
in the current setting of F = 59 (F = 2πfν/(U2∞ × 10−6)) and setting the phase shift
between adjacent slots to ±60◦ a spanwise wavelength of 63 mm was obtained. The
mode shape of the generated waves was compared to that calculated by linear theory
and good agreement was found as shown in figure 4, where also the mean velocity
profiles are displayed.

Setting frequency and spanwise wavelength the wave angle was found from flow
visualizations to be 35 ± 3◦, well in accordance with the theoretical value of 38◦.
The fact that the generation device was directly forcing the desired eigenmode was
established by showing that the amplitude of the oblique waves was a linear response
of the excitation amplitude A. This is shown in figure 5(b), where A is linearly related
to the loudspeaker input. A bandpass filter selected the frequency of the oblique
waves for the urms displayed in the figure and as the measurements were made close
(x = 217 mm) to the disturbance generation device higher harmonics had very low
amplitude. Figure 5(a) demonstrates that the mode shape was independent of the
forcing amplitude.

2.2. Numerical method

2.2.1. Numerical scheme

The simulation code (see Lundbladh, Henningson & Johansson 1992 and Lund-
bladh et al. 1994) used for the present computations uses spectral methods to solve
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the three-dimensional, time-dependent, incompressible Navier–Stokes equations. The
algorithm is similar to that of Kim, Moin & Moser (1987), i.e. Fourier representation
in the streamwise (x) and spanwise (z) directions and Chebyshev polynomials in the
wall-normal (y) direction and pseudo-spectral treatment of the nonlinear terms. The
time advancement used was a four-step low-storage third-order Runge–Kutta method
for the nonlinear terms and a second-order Crank–Nicholson method for the linear
terms. Aliasing errors from the evaluation of the nonlinear terms were removed by the
3
2
-rule when the FFTs were calculated in the wall-parallel plane. In the wall-normal

direction we have found it more efficient to increase resolution rather than using
dealiasing.

To correctly account for the downstream boundary layer growth and pressure
gradient effects a spatial technique is necessary. That requirement was combined with
the periodic boundary condition in the streamwise direction by the implementation
of a ‘fringe region’, similar to that described by Bertolotti, Herbert & Spalart (1992).
In this region, at the downstream end of the computational box, the function λ(x)
is smoothly raised from zero and the flow is forced to a desired solution v in the
following manner:

∂u

∂t
= NS(u) + λ(x)(v − u) + g, (2.1)

∇ · u = 0, (2.2)

where u is the solution vector and NS(u) the right-hand side of the (unforced)
momentum equations. Both g, which is a disturbance forcing, and v may depend
on the three spatial coordinates and time; v is smoothly changed from the laminar
boundary layer profile at the beginning of the fringe region to the prescribed inflow
velocity vector. This is normally a boundary layer profile of a chosen Falkner–Skan
flow, but can also contain a disturbance. A convenient form of the fringe function is

λ(x) = λmax

[
S

(
x− xstart

∆rise

)
− S

(
x− xend

∆fall

+ 1

)]
. (2.3)

Here λmax is the maximum strength of the damping, xstart to xend the spatial extent of
the region where the damping function is non-zero and ∆rise and ∆fall the rise and
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fall distance of the damping function. S(x) is a smooth step function rising from zero
for negative x to one for x > 1. We have used the following form for S , which has
the advantage of having continuous derivatives of all orders:

S(x) =


0, x 6 0

1/

[
1 + exp

(
1

x− 1
+

1

x

)]
, 0 < x < 1

1, x > 1.

(2.4)

This method damps disturbances flowing out of the physical region and smoothly
transforms the flow to the desired inflow state, with a minimal upstream influence.

In order to set the free-stream boundary condition closer to the wall, a gener-
alization of the boundary condition used by Malik, Zang & Hussaini (1985) was
implemented. Since it is applied in Fourier space with different coefficients for each
wavenumber, it is non-local in physical space and takes the form

∂û

∂y
+ |k|û =

∂v̂0

∂y
+ |k|v̂0. (2.5)

Here k is the absolute value of the horizontal wavenumber vector and û is the Fourier
transform of u. The Fourier transform v̂0 of v0 is usually the local solution to a
Falkner–Skan flow, with the streamwise free-stream velocity varying as

U = U0x
m. (2.6)

v0 can also be chosen arbitrarily in order to simulate other pressure variations than
those found in Falkner–Skan flow. On the wall the boundary condition is either no
slip or a time-dependent wall-normal velocity.

2.2.2. Disturbance generation and box dimensions

The presented numerical implementation provides several possibilities for distur-
bance generation. Oblique waves with an angular frequency ω0 = 2π 90 Hz and a
spanwise wavenumber of β0 = 99.73 m−1 has in this investigation been generated
with five different methods. In the presentation of results we will transform the
non-dimensional variables used in the simulation code to dimensional ones, using
the kinematic viscosity for air and free-stream velocity U∞ = 12 m s−1. We will also
refer the downstream coordinate x to the virtual leading edge of the experiment.
We have given the five different generation methods of oblique waves the following
abbreviations:
frin Generation in the fringe region by adding the least-damped Orr–Sommerfeld

mode for the chosen parameters to the forcing vector v in equation (2.1). The
computational box was in this case designed such that the inflow was at x = 186 mm.
body Generation by a body force. In the volume 184 6 x 6 187 mm, 0 6 y 6

1.55 mm g was assigned to: gx = A cos (β0z) cos (ω0t)/(2ω0), gy = A cos (β0z) sin (ω0t),
gz = −A sin (β0z) sin (ω0t)/(2β0), where the amplitude A was smoothly reduced to be
zero at the top boundary of the forcing volume.
blow Generation by blowing and suction. The wall-normal velocity component (v)

in the interval 184 6 x 6 187 mm was on the wall specified as v = A cos (β0z) sin (ω0t).
step Generation by stepwise blowing and suction. The wall-normal velocity com-

ponent in the interval 184 6 x 6 187 mm was on the wall set to vary as v =
A step(z) sin (ω0t), where the ‘step’ function for each spanwise wavelength has six
levels: 1, 0.5, −0.5, −1, −0.5, 0.5. The change-over between the levels was smooth.
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x1× y1× z1 nx× ny × nz Forcing
(mm) (resolution) urms%

Box 1 775× 11.6× 63 1200× 65× 96 1.4
Box 2 397× 11.6× 63 512× 65× 80 2.3
Box 3 310× 11.6× 63 512× 65× 120 2.3
Box 4 310× 11.6× 63 720× 97× 192 2.3

Table 2. Resolution and box dimensions for the simulations presented. The box dimensions include
the fringe region, which took up 62 mm at the downstream end of the box in all cases. z1 and
nz representes the full span and the total number of Fourier modes, respectively. In the actual
computations these numbers could be halved since the flow is symmetric. The forcing is given as
the urms of the oblique waves at x = 217 mm.

damp Generation by blowing and damped suction. The wall-normal velocity com-
ponent in the interval 184 6 x 6 187 mm was on the wall set to vary as

v = max(A cos (β0z) sin (ω0t), A d cos (β0z) sin (ω0t)), (2.7)

where 0 6 d 6 1 is a damping factor reducing negative values of the wall-normal
velocity at the wall.

The DNS code for the boundary layer geometry is a development of the channel
code by Lundbladh et al. (1992), which has been extensively tested and used. To
verify the spatial boundary layer version comparisons have been made with the
results reported by Fasel & Konzelmann (1990). It was also possible to compare with
linear parallel theory by adding a body force:

g = − 1

R

∂2U(x, y)

∂y2
, (2.8)

which produces a parallel mean flow in the whole computational domain.

The box sizes and resolutions used for the simulations presented in this paper are
displayed in table 2. The displacement thickness at the position where the oblique
waves were generated was 0.83 mm and this was 30 mm downstream of the inflow
boundary in all but the frin case. The width of the box was set to fit one spanwise
wavelength of the oblique waves. Since an initial symmetry is preserved by the
Navier–Stokes equations we could save computational costs by only calculating one
half of each wall-parallel (x, z) plane. Box 1 was used for the calculations presented
in § 3.1.1 and § 3.1.2. The lower forcing amplitude was used to prolong the transition
development and clarify the initial part. The flow visualization presented in § 3.1.1
was also made with a lower forcing amplitude. The transition stages and development
observed were the same as for the other cases. Box 2 was used for the simulations in
§ 3.1.3 and § 3.2. The flow in Box 1 and Box 2 did not reach as far in the transition
process as in the other two cases and the calculations were therefore over-resolved.
Box 3 and Box 4 were used for the results in § 3.3 and § 3.4. The amplitudes of the
disturbances and the flow observed in these cases were the same, but the resolution of
Box 3 was marginal whereas that of Box 4 was sufficient, which we concluded after
finding the most energetic structures in the end of the box at identical positions and
with a difference in the streamwise shear of less than 1%.
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(a)

(b)

Figure 6. (a) Photo from flow visualization of oblique transition. (b) Instantaneous streamwise
velocity from numerical simulation, plane parallel to the wall, flow from left to right.

3. Results
In order to better demonstrate the coherence of experiment and simulations, we

sometimes present data from both investigations in the same figure. In general,
we want to give a good description of oblique transition and therefore alternate
experimental and DNS results depending on what is most suitable for describing a
certain property. The presentation of results in § 3.1 shows the basic mechanisms of
oblique transition and establishes that we observe the same qualitative development
in both experiment and calculations. In § 3.2 we present a numerical investigation
of how the different disturbance generation techniques and changes in the pressure
gradient affect the transition scenario. Those results are in § 3.3 used to closely model
the experiment using the DNS. Finally a combination of numerical and DNS results
is used in § 3.4 to give a good picture of the late stage of oblique transition.

3.1. Basic features

3.1.1. The emergence of large-amplitude streaks

The photograph from a flow visualization in figure 6(a) displays the dominating
feature of oblique transition: spanwise-periodic streamwise streaks growing inside the
boundary layer. These are associated with regions of low- and high-speed streamwise
velocity and a snapshot of this velocity component from a simulation displays a
similar picture (figure 6b). The comparison is qualitative and the amplitude of the
initiated oblique waves may be different in the two figures. The results presented
in this subsection mostly originate from experiments and simulations with weak
forcing of the oblique waves. This prolongs the initial development in the streamwise
direction and the initially generated oblique waves are therefore clearly noticed as
a checkboard pattern of dark and light patches in the left upstream part in figure
6(a,b). The development of the oblique waves is, however, easier to study when the
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Figure 7. (a) Fluctuating streamwise velocity ũ at y = 0.98 mm, contour spacing 0.005.
(b) Contours of urms at y = 0.98 mm, spacing 0.0025.

time-averaged mean streamwise velocity U is subtracted from the flow field, thus
removing the steady streaks from the velocity.

In figure 7(a), where only the fluctuating part of the streamwise velocity ũ =
ũ(t, x, y, z) remains, the oblique waves are seen to decay slowly after the generation
point. Further downstream the pattern changes as disturbances with higher spanwise
wavenumber reach an amplitude comparable to that of the oblique waves. Since the
alternating maxima and minima of the oblique waves are aligned in the streamwise
direction, the root mean square of the streamwise velocity (urms) will also show
structures aligned in the streamwise direction (figure 7b).

The nonlinear interaction of the oblique waves generates counter-rotating stream-
wise vortices. The time-averaged mean of the streamwise vorticity is shown in figure
8(a,d) together with the mean of the wall-normal and spanwise velocity components
(figure 8 b,c). The spanwise wavelength of the vortex pattern is half that of the
oblique waves. The vortices decay downstream, but in spite of that they generate
the growing high- and low-speed streaks by the lift-up mechanism described in the
introduction. By subtracting the spanwise mean from the mean streamwise velocity
in both experiment and simulation and plotting in a plane perpendicular to the flow,
comparable figures of the streamwise velocity perturbation are shown in figure 9(a,b).
The small arrows symbolize the rotation direction of the associated vortices.

If the amplitude of the initiating oblique waves is to low, the streak amplitude
will grow and thereafter decay, but for larger amplitudes transition to turbulence
will be observed. The forcing amplitude was low in previous figures to prolong the
initial development of the oblique waves and the streaks and transition occurred
downstream of the measurement domain. For the results presented in figure 10 and
in all other Sections, the initial amplitude of the oblique waves was increased to
move the fully turbulent region upstream. Figure 10 shows wall-normal profiles of
streak amplitude for several downstream positions in the experimental set-up. The
shape is the same as the so-called Klebanoff mode (Klebanoff 1971; Kendall 1985),
which consists of low-frequency oscillations observed in boundary layers subjected to
free-stream turbulence. The maxima of the profiles are found at a constant y/δr . The
streak amplitude decreases after x = 467 mm when the disturbance level in the flow
reaches high values (figure 10b) and the maximum of the wall-normal profile moves
away from the wall (figure 10a).
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Figure 11. Energy in the initially generated Fourier mode (1, 1) (solid line). The modes exited after
the first generation of nonlinear interaction (0, 2), (2, 2) and (2, 0) (dashed lines). Modes exited after
the second step of nonlinear interactions are dotted lines, (1, 3), (3, 3) and (3, 1). Dash dotted lines
are (0, 4).

3.1.2. Development of Fourier components

We transform the velocity fields in time and in the spanwise direction to Fourier
space and use the notation (ω, β), where ω and β are the frequency and spanwise
wavenumber respectively, each normalized with the corresponding fundamental fre-
quency/wavenumber. Thus the oblique waves are represented by (1, 1) and (1,−1)
and the streaks by (0, 2). In figure 11 the slow decay of (1, 1) after the peak at the
generation point x = 186 mm is clear as well as the upstream influence of the genera-
tion. As the flow is symmetric and (ω, β) equal to (ω,−β), we only show modes with
positive β. The first generation of nonlinearly excited modes (2, 0), (2, 2) and (0, 2)
are represented by dashed lines and the the second generation modes (3, 1), (3, 3) and
(1, 3) are dotted. According to the results on non-modal growth, disturbances with
zero or low frequency should have the greatest growth potential, which is precisely
what we find. The (0, 2) and (1, 3) modes gain approximately two orders of magnitude
more energy than the other modes of their respective nonlinear generation. This is
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Figure 13. Streak amplitude at x = 478 mm in the experiment as function of the squared forcing
amplitude of oblique waves, showing the quadratic dependence of the streak response on the
forcing. At higher forcing amplitudes the streaks saturate and therefore do not follow the quadratic
behaviour.

also true for the (0, 4) mode which is the only mode of higher nonlinear generation
displayed in figure 11. After x = 350 mm the curves representing the (1, 1) and (1, 3)
modes approach each other, which is also evident in figure 7(a) where the fluctuating
velocity field is gradually complicated by shorter spanwise wavelengths.

3.1.3. Quadratic dependence of streak amplitude

In figure 12 the development of the energy in the (1, 1) and (0, 2) modes is compared
using simulations with three different initial wave amplitudes. If the amplitudes are
scaled with the maximum of (1, 1) for each run (figure 12a), the (1, 1) curves collapse
showing the linear relation between the forcing and the downstream amplitude. The
energy in (0, 2) for the case with the strongest initial forcing reaches a level where
nonlinear saturation occurs at approximately x = 400 mm. Scaling with the maximum
of (1, 1) squared instead, as in 12(b), the (0, 2) curves collapse up to the downstream
position of saturation, showing the quadratic nonlinear generation of (0, 2) from
(1,±1).

The same observations can be made in the experiment. It was shown in figure 5(b)
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Note the additional growth in (0, 2) caused by the non-modal effects.

that the oblique waves scale linearly with the forcing amplitude of the loudspeakers.
The streak amplitude depends quadratically on the forcing amplitude in the experi-
mental investigation, see figure 13, where the streak amplitude at a fixed downstream
position is plotted against the square of the forcing amplitude. The experimental
curve follows the straight line until the forcing is strong enough to cause nonlinear
saturation of the streaks.

3.1.4. Non-modal effects

The initial behaviour of the nonlinearly generated Fourier modes shows the presence
of non-modal effects in the amplification and growth. To make this point clear we
show in figure 14 the quadratic part of the first generation nonlinearly generated
modes, i.e. (0, 2), (2, 2), (2, 0) and (0, 0), extracted using the numerical amplitude
expansion technique developed in Henningson, Lundbladh & Johansson (1993). First
note that all four modes appear to be generated simultaneously by the nonlinear
interaction of the two oblique waves. Second, it is apparent that the response to
the nonlinear forcing by the oblique waves is very different. The (2, 0) and the (2, 2)
components, which are damped and not associated with large non-normal effects,
stay at a rather low level during the simulation. The (0, 0) component which is less
damped, but for which all wall-normal eigenfunctions are orthogonal, experience a
slightly larger growth after the initial generation. However, the (0, 2) component, that
has a damping similar to the (0, 0) component, dominates since it can be forced
to high amplitude by moderate forcing. This non-modal effect is associated with
the highly non-orthogonal set of eigenfunctions present for this Fourier component.
These results are consistent with the bounds on the response to forcing presented in
§ 1.2, although here we are dealing with spatial rather than temporal growth.

3.2. Dependence of the disturbance evolution on physical and numerical parameters

In this section we will discuss how the flow reacts to changes of input parameters
and how to understand discrepancies between experiment and simulation.

3.2.1. Effects of different disturbance generation methods

R.m.s. dependence

Both an experimental and a numerical investigator may consider different designs
or methods for disturbance generation. We have therefore compared the five gen-
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Figure 15. Downstream development of urms for the five different generation methods of
the oblique waves and experimental results.

eration methods mentioned in § 2.2 and the experimental results. An experimental
correspondence to the frin method is hard to think of, but blow, step and damp
are certainly connected to experimental blowing and suction devices and the body
method could be connected to an experiment with vibrating ribbons. Indeed Elofsson
& Lundbladh (1994) managed to closely model vibrating ribbons in a channel flow
by the use of an oscillating body force.

Figure 15 shows the downstream development of the r.m.s. amplitude in the
streamwise velocity component (urms) for the five different generation methods as well
as for the experiment. The strength of the generation in the simulations was set such
that the maximum urms at x = 217 mm was equal to the experimentally measured
value at that position. The signal in both the experiment and the simulation was
filtered to select the generation frequency, and in the following the curves of urms will
only contain that frequency. The difference between the total urms and the filtered urms
in the simulations presented in this section never exceeded 14% and that occurs when
the flow is almost turbulent.

The overall downstream development of urms is similar for all five cases, despite the
fact that the initial development strongly depends on the type of forcing and that
matching was done at a single downstream position. The curve for the frin case lies
slightly below the others and urms grows significantly more after x = 400 mm in the
damp case. The damping factor of suction in the damp simulation presented in this
section was d = 0.4.

R.m.s. modes and their phase

In frequency–wavenumber space the modes contributing to the filtered urms will
be (1, β), where β is any integer. Note that as the flow is symmetric the modes
(ω, β) and (ω,−β) have the same amplitude and in the following we will de-
note the sum of these modes by (1,±β). We find that the dominating modes are
(1,±1), (1,±3) and (1,±5). Figure 16 shows urms and the r.m.s. of these modes
of the blow case together with the phase difference between the (1, 1) and the
(1, 3) modes. The generated (1,±1) mode decays downstream but the (1,±3) and
(1,±5) modes grow and after x = 380 mm (1,±3) dominate. The phase relation
explains the local extrema appearing in the urms curve, where a minimum ap-
pears when the phase shift is ± 1

2
π and a maximum when it is 0. The extremum
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is sometimes slightly off the location with ± 1
2
π or 0 phase shift, which is caused

by the fact that (1, 1) mode is decaying and the (1, 3) one increasing.
To further study the differences between the generation methods, the dominating

frequency–wavenumber modes are compared in figure 17. It is clear that the down-
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Figure 19. (a) Streak amplitude, (b) (0, 2) mode, (c) (0, 4) mode and (d) (0, 6) mode for different
generation methods and experiment.

stream differences in the filtered urms are accounted for by the higher modes (1,±3)
and (1,±5). Particularly, the strong growth in the damp case is associated with the
(1,±5) modes. Significant initial generation of the (1,±5) modes in the step case
is observed in figure 17(c). Comparing with the experimental results one finds that
generation with a stepwise amplitude variation in the spanwise direction is necessary
to get close agreement. This is illustrated in figure 18 where the spanwise variation of
both urms and the phase are plotted. The urms curve for both the experiment and the
step simulation show a typical bottle shape, caused by the (1, 5) mode. Results from
a simulation with a sinusoidal spanwise blowing and suction have been included in
the figure as reference and this has a square-wave-like phase curve, to compare with
the curves including sharp peaks corresponding to the stepwise results.

Streak dependence

The differences in generation of the oblique waves and the growth of the r.m.s.-
modes will obviously influence the growth of the streak amplitude, which we define
at each downstream position as maxy(maxz(Ū)−minz(Ū)). As we consider the mean
flow, the modes in frequency–wavenumber space that are associated with the streak
amplitude will be (0, β), β being any integer. In figure 19(a–d) the downstream
development of the streak amplitude and the three most important streak modes
(0, 2), (0, 4) and (0, 6) are plotted for the five different generation methods. Except for
the damp case, the (0, 2) mode is dominating. A Fourier expansion of the expression
for the damp generation (equation (2.7)) reveals that the damp method also directly
generates modes (0, 2m), with continuously decreasing strength for increasing integer
m. This initial generation of (0, 2) is clearly seen at x = 190 mm in figure 19(b) and
is in better agreement with the experiment, which also has a higher streak amplitude
at the generation point apart from growing more rapidly downstream. The initial
generation of (0, 2) has little effect on its downstream development as the forcing
from (1,±1) modes is dominating. A week initial generation of the (0, 4) and (0, 6)
modes by the damp method can also be observed. Generation by stepwise blowing
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and suction generates the (1, 5) mode initially and the nonlinear interaction of (1, 5)
and (1, 1) transfers energy to the (0, 6) mode, which is observed to appear shortly
downstream of the generation point for the step case in figure 19(d).

3.2.2. Effects of pressure gradient

The investigation of disturbance generation did not explain the discrepancy in
the streak growth observed in figure 19(a), something that could be caused by
a slight mean pressure gradient in the experiment. We observed that the (1,±1)
modes decayed faster in the simulations than in the experiment (figure 15) and
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therefore chose a positive pressure gradient. That will decrease the damping of the
oblique waves and thereby increase the forcing of the streaks. Three simulations
with Falkner–Scan flow were performed, where the exponent m in equation (2.6)
was set to −5.525 × 10−3, −1.370 × 10−2 and −1.907 × 10−2. The oblique waves
were generated by blowing and suction with a sinusoidal spanwise distribution.
Figure 20(a) shows the filtered urms as function of downstream position for the
zero-pressure-gradient case and the experiment, together with the three cases with
pressure gradient. An increased adverse pressure gradient does indeed decrease the
damping of the (1, 1) mode associated with the urms curve and increase the growth
of the higher modes dominating after x = 350 mm (figure 20b,c). The increased
growth of higher modes is caused both by the stronger forcing from the less damped
oblique waves and the change of pressure gradient and this is also noted in figure
21(a–c) displaying the streak amplitude and the associated modes. Although a faster
downstream development is caused by a positive pressure gradient, the qualitative
characteristics of the transition scenario are not altered by the pressure gradient. We
note that the experimental data for urms up to x = 350 mm agree better with the
simulation, having higher positive pressure gradient, and the corresponding curve of
streak amplitude also gives the closest agreement, although it is still under-predicted.

3.3. Detailed modelling

The results on how the generation method and a pressure gradient influence the
transition scenario studied will in this section be used to model the experiment
closely. Using blowing and suction is obvious since that was used in the experiment.
The good agreement in the urms between the simulations and the experiment given
by the step method was shown in figure 18. Moreover, in figure 21(a) one observes
that the streak amplitude in the experiment starts at a higher level than the curves
from the simulations. An increase in initial streak amplitude was observed when
the damp method was used in figure 19(a,b) and consequently a damping factor for
suction of 0.7 was used for the results presented in this Section. An adverse pressure
gradient was specified to get good agreement between experiment and simulation
results for the growth of the (1,±1) modes for the first 150 mm downstream of the
generation device. A favourable pressure gradient was used after that in an attempt
to avoid early transition. The free-stream velocity variation with downstream location
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Breakdown

Figure 25. Late transition stage from flow visualization of oblique transition. Observe that
turbulent high-frequency oscillations are first formed at the spanwise edge of the streaks.

associated with the pressure gradient used is displayed in figure 22, together with
the variation of U∞ for the five different Falkner–Skan profiles used earlier in § 3.2.2.
Only a very small pressure gradient was observed in the experiment but other flow
characteristics could explain the larger growth rates observed in the experiment.
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Figure 26. Time signal at z = −2.5 mm, xv = 566 mm, y/δr = 1.55.
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Figure 27. Non-stationary phase-averaged mean velocity profiles, xv = 566 mm, z = −2.5 mm.
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Figure 28. urms represented by colours in a scale from blue-minimum to red-maximum in a plane
perpendicular to the flow. White contours represent Ū−meanz(ū) solid contours positive values and
dashed contours negative values. Simulation data (a) are from x = 410 mm and the experimental
data (b) from x = 566 mm, as transition is earlier in the simulation.

Klingmann et al. (1993) for example concluded in their investigation of the stability
of T-S-waves that an unsuitable leading edge often explained high growth rates
observed in experiments.

Figure 23 displays the downstream variation of urms and the streak amplitude for
both the experiment and a simulation using the above described detailed modelling.
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Figure 29. Isosurfaces of positive and negative instantaneous streamwise vorticity from the simula-
tion are coloured yellow and green respectively. Note the formation of a Λ-vortex in the downstream
part of the box. A pair of counter-rotating vortices is displayed as red and blue surfaces representing
positive and negative mean of streamwise vorticity, respectively.

The agreement is excellent to x = 320 mm for urms and to x = 340 mm for the
streak amplitude. Further downstream the pressure gradient cause earlier transition
in the simulation. Therefore the later stages of the breakdown process occur at earlier
streamwise positions than in the experiment. Thus a comparison of features from a
particular stage in the transition process will have to occur at different streamwise
positions in experiment and simulation. In figure 24 the spanwise variation of urms and
Ū are compared at downstream positions where the transition process has reached
the same stage, i.e. where the maximum of urms is the same in both simulation
and experiment. The mean and r.m.s. values at x = 391 mm in the simulation are
compared with the corresponding values at x = 514 mm in the experiment. The
agreement shown requires that the amplitude and phase of all modes involved have
the correct relations and is achieved thanks to the good modelling of the generation
device for oblique waves. The difference in streak amplitude in figure 24(a) is smaller
than that observed in figure 21(a). The reason for this is that the streak amplitude in
the experiment decays after x = 467 mm (figure 10b).
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3.4. Final breakdown

3.4.1. The onset of high-frequency fluctuations

The last figure (figure 24) of the previous subsection shows that the peaks of urms
appear where the spanwise gradient of Ū has its maximum. This is different from the
early stages of oblique transition where urms is dominated by the oblique waves and
therefore lies in the middle of the low-speed streaks (cf. figure 7). The meandering
streaks displayed in the flow visualization (figure 6) indicate that large urms values
are produced, as the boundary between high- and low-speed fluid oscillates in the
spanwise direction. A close-up of the streaks in the flow visualization also displays the
first turbulent high-frequency oscillations just where the colour of the smoke pattern
changes from black to white (figure 25).

The distribution of urms in a plane perpendicular to the flow is presented in colour
scale for both simulation and experiment in figure 28(a,b) below. The experimental
data are taken from x = 566 mm and the simulation results at x = 410 mm, a
difference that again is attributed to the earlier transition in the simulation. A
characteristic symmetric structure with two legs, each containing a maximum of
urms, joined at their upper half is identified in both figures. The figures also include
contours of Ū−meanz(Ū) and the shear is found to be high in regions close to where
the maxima of urms are situated. This is an indication that it is oscillations of high
instantaneous spanwise shear between the streaks that causes the high urms values.
The wall-normal and spanwise positions, where the peaks of urms are found, are the
same as those where the first appearance of high-frequency oscillations was detected
by a hot wire. A time trace from the experiment at such a position is presented
in figure 26, where each fundamental cycle contains high-frequency oscillations. A
spectral analysis reveals both high amplitude of several subharmonics and a range
of amplified frequencies at approximately 800 Hz. In the phase-averaged streamwise
velocity profiles collected at different phases during a fundamental time period in the
experimental investigation (figure 27), we find inflectional profiles. The positions of
inflectional profiles coincide with the positions where we found the peaks of urms and
the high-frequency oscillations. The inflectional profiles were only present during part
of a time period and the same was true for the high-frequency oscillations.

3.4.2. Flow structures

It is interesting to relate the statistical quantities and the instantaneous observations
discussed above to structures appearing in the flow during transition. In figure 29
positive and negative isosurfaces of instantaneous streamwise vorticity are displayed
in yellow and green respectively. At x = 200 mm a spanwise row of small surfaces
is revealed where the wave generator is situated. The oblique waves are then seen as
streamwise rows of alternating positive and negative vorticity. When the flow evolves
downstream the patches of vorticity are gradually divided (x = 360 mm). Groups of
three surfaces overlapping each other are separated alternately to the left and to the
right. Two such groups, of three surfaces, from neighbouring rows form new groups,
in which we can identify the middle pair of surfaces as counter-rotating vortices
forming a Λ-shaped structure. The two pairs of surfaces above and below do not
represent vortices but regions of high wall-normal shear of the spanwise velocity,
∂w/∂y. Observe that there is no spanwise vortex connecting the legs of the Λ-vortex,
which is natural since the legs have developed independently and thereafter been
drawn towards each other. The red and blue surfaces in figure 29 represent positive
and negative mean streamwise vorticity. It is that motion that creates the low- and
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Investigator Rδ∗ u0
rms F β0

δ∗

Joslin et al. (1993) 900 0.02, 0.002 86 0.20
Berlin et al. (1994) 400 0.02 200 0.19
Wiegel (1996) 664 0.023 59 0.083
Present 664 0.023 59 0.083
Elofsson (1998) 583 0.075, 0.05 43 0.13

Table 3. The main parameter settings used in investigations of oblique transition in
zero-pressure-gradient boundary layers. Some results with other settings are also included in
most investigations. Rδ∗ represents the Reynolds number based on the displacement thickness,
F the non-dimensional frequency and β0

δ∗ the spanwise wavenumber at the generation position
non-dimensionalized by the displacement thickness. u0

rms is taken as the maximum urms measured at
the inflow position or at the first measurement station downstream of the disturbance generation
device. Two amplitudes were used in the first and last investigations in the table.

high-speed streaks in the streamwise velocity and it is also responsible for the observed
splitting of the instantaneous vorticity patches. In the first portion of the box the red
and blue structures are mainly what we previously have called the (0, 2) mode and
the yellow and green structures correspond to the (1,±1) mode. In the downstream
region of the box the mean streamwise vorticity surfaces instead tend to be a trace
of the instantaneous vorticity structures.

In figure 30 the structure inside the smaller red box in figure 29 is studied. The
green and yellow surfaces are the same in figures 29 and 30 and in figure 30(a)
the red and blue surfaces represent positive and negative wall-normal disturbance
velocity respectively. By disturbance velocity we mean that the laminar velocity has
been subtracted. The original checked pattern of positive and negative wall-normal
velocity disturbances has here been deformed by the Λ-vortex. It has strengthened the
upwash in the middle of the structure, which creates the strong shear layer observed
in figure 30(b). In that figure the red surfaces represent the wall-normal shear of the
streamwise disturbance velocity. One observes both a high shear layer riding on top
of the Λ-vortex and strong shear layers underneath the Λ-vortex. The lower shear
layers start at the wall and follow the Λ-vortex upwards. They are caused by fluid
with high streamwise velocity brought down by the negative wall-normal velocity
(blue surfaces in figure 30a). In figure 30(c) the Λ-vortex has been cut and inside it,
surfaces of minimal wall-normal shear of the streamwise velocity are displayed. That
∂u/∂y has a local minimum means that there is a inflectional velocity profile at that
position. The isocurves at the face of the box in figure 30(c) represents constant urms
in that plane. The results are consistent with the experimental results showing the
highest urms values in the region where we find the inflectional profiles.

4. Discussion
4.1. Comparison with previous investigations of oblique transition

The qualitative agreement between other investigations of oblique transition in incom-
pressible boundary layers and the present investigation is good. Most characteristic is
the initial rapid growth of the (0, 2) streak mode caused by non-modal mechanisms.
A detailed comparison is difficult to make as the parameters used differ considerably
as can be seen in table 3. The relations between the modes presented by Joslin et al.
(1993) agree well with both those presented by Berlin et al. (1994) and those found in
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Figure 30. Isosurfaces of positive and negative instantaneous streamwise vorticity are coloured
yellow and green respectively. In (a) the red and blue surfaces represents constant positive and
negative values of the wall-normal disturbance velocity respectively. In (b) and (c) the red and blue
surfaces represent constant positive and negative values respectively of the wall-normal shear of the
streamwise disturbance velocity, isolines are constant urms.

the present investigation. The structures we have identified in the late transition state
were in a re-examination also found in the data of Berlin et al. (1994), and Elofsson
(1998) also observed Λ-shaped structures in a staggered pattern. The development
of Fourier components in Elofsson (1998) displays two features that differ from the
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standard calculations. One is the high values of the (0, 4) mode, which is explained
by the fact that he used a blowing and suction technique similar to that used in the
present investigation. We have shown that it is well modelled in the numerics by the
damp generation method, which also produced the (0, 4) mode. The second difference
is the low level of the (1, 3) mode. That is more difficult to explain as one would
expect it to be generated by the nonlinear interaction of the strong (1,±1) and (0, 2)
modes as in other experiments and calculations.

4.2. Relation to transition caused by streamwise vortices and free-stream turbulence

Strong growth of streamwise streaks with the same wall-normal mode shape as
in the present investigation has also been observed in experiments on boundary
layers subjected to free-stream turbulence (Klebanoff 1971; Kendall 1985; Westin et
al. 1994). Bertolotti & Kendall (1997) introduced a single free-stream vortex in an
experiment and found the same boundary layer response as to free-stream turbulence.
They compared the boundary layer response to a receptivity model proposed by
Bertolotti (1997), which did not include the leading edge, and found good agreement.
After matching the strength of the boundary layer response of the experiment, they
calculated the downstream streak growth using linear PSE and found good agreement
with the experiment. Berlin & Henningson (1999) introduced both streamwise streaks
and oblique waves in the free stream in a numerical investigation and both types of
disturbance caused streak growth in the boundary layer. They identified both a linear
and a nonlinear receptivity mechanism.

As in the present study the observed streak growth in all these investigations agrees
well with the theory of non-modal growth. Moreover, Andersson et al. (1997) found
good agreement with the experimental results by Westin et al. (1994) when they
investigated spatial non-modal growth.

4.3. Similarities with the structures of K-type and H-type transition

The structures that we have identified in the late stage of oblique transition have many
similarities with those previous investigators have found in the corresponding stage
of K- and H-type transition. We find for example Λ-vortices with the strong shear
layers on top, streamwise vortices deforming the mean flow and inflectional profiles.
Structures are easier to extract from numerical simulations and comparisons can be
made with the spatial simulation of K-type transition by Rist & Fasel (1995) or the
temporal simulations of both K- and H-type transition by Laurien & Kleiser (1989).
Detailed flow structures of both K-type and H-type transition are also reported for
channel flow by Krist & Zang (1986), Zang & Krist (1989) and others. Experimental
investigators reporting details of the flow structures before breakdown are for example
Williams, Fasel & Hama (1984) for K-type and Corke & Mangano (1989) for H-type
transition.

It is important to note that we are discussing three different transition scenarios.
The differences lie in the initial conditions and the initial mechanisms for disturbance
growth. Oblique transition does not need two-dimensional TS-waves, which are es-
sential for the secondary instability scenarios, K-type and H-type transition. Oblique
transition instead is caused by nonlinear interactions and non-modal growth mecha-
nisms. However, by studying the initial conditions and the vital nonlinearly generated
modes in the three scenarios we can understand that the striking similarities found
in the late transition stage are in all three cases caused by oblique waves interacting
with streamwise vortices.

The initial conditions of the important modes for the three transition scenarios
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Figure 31. Graphs displaying the relation between the most important modes in (a,b) K-type, (c)
H-type and (d) oblique transition. Modes marked with black dots are initiated with the largest
amount of energy. Grey dots symbolize modes initiated with a small amount of energy and squares
represent modes that are generated nonlinearly and are vital in the transition process or for what
is observed at the late stage of transition.

are indicated in figure 31(a–d) together with some important nonlinearly generated
modes. Black dots mark the modes where the largest initial energy is introduced in the
flow. Grey dots mark modes that are initiated with a smaller amount of energy and
finally squares represent vital modes that are generated nonlinearly from the initially
exited modes. Figure 31(a,b) represents the K-type scenarios with the main initial
energy in the (1, 0) mode. In 31(a) the oblique modes (1,±1) are also initiated as is
done in many numerical simulations. The counter-rotating vortices with associated
streaks (0,±1) that causes the spanwise modulation of the flow are in this case
generated nonlinearly. In experiments it is usual to initiate the vortices/streaks and
the TS-wave and let the oblique modes be generated nonlinearly, which is illustrated
in figure 31(b). The (1,±1) modes in figure 31(a,b) also generate the (0,±2) modes,
but with a small amplitude compared to the interaction of (1, 0), (1,±1) and (0, 1).
Even so the (0,±2) modes can grow to an amplitude comparable to that of the
(0,±1) ones, as it does at the late stages in the computations by Laurien & Kleiser
(1989). The initial conditions for H-type transition are described in figure 31(c),
with the main initial energy still in the (1, 0) mode and with a small amount in
the oblique subharmonic (1/2,±1) modes. The vortex-streak modes of importance
now are (0,±2), which are nonlinearly generated by the subharmonic modes. Finally
oblique transition is described in figure 31(d). The two-dimensional TS-mode (1, 0)
is excluded and the initial energy is instead only introduced in the oblique waves
(1/2,±1). The vortex-streak modes (0,±2) are generated nonlinearly exactly as in
H-type transition, but the energy in the oblique waves is higher and consequently the
forcing of the vortex-streak mode stronger. Therefore the streaks are captured in a
flow visualization rather than the Λ-vortices as for H-type transition. The naming of
modes is of course just a matter of normalization and in an attempt to simplify the
comparison, oblique transition in this discussion involve modes (0,±2) and (1/2,±1),
whereas we previously have called these modes (0,±2) and (1,±1).

With the sketches in figure 32 we illustrate the late stages of the three transition
scenarios. The flow is from left to right and the grey shading represents the wall-
normal velocity of oblique waves, dark for positive and bright for negative. The
circles with arrows symbolize streamwise elongated counter-rotating vortices, with
the rotation direction indicated by the arrows. Contours of the wall-normal velocity
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(a) (b)

Figure 32. Relation between oblique waves, Λ-vortices and streamwise vortices for (a) K-type
transition and (b) H-type transition and oblique transition. The wall-normal velocity components
of the oblique waves are represented by the grey scale pattern, where dark means positive and
bright negative velocity. The arrows on the circles indicate the rotation direction of counter-rotating
streamwise vortices. Solid and dashed lines are contours of the wall-normal velocity associated with
the vortices. Positions where Λ-vortices appear are marked by the black Λ symbols.

associated with the vortices are also included in the figures. Solid contours indicate
positive and dashed negative wall-normal velocity. The wall-normal motion will create
streaks with low and high streamwise velocity, appearing where the solid and dashed
contours are respectively. In 32(a) the streamwise and spanwise scales of the oblique
waves are the same and the spanwise wavelength of the vortex pattern is the same
as that of the oblique waves. These conditions correspond to K-type transition also
shown in figure 31(a,b). Λ-vortices will appear at positions where the oblique waves
produce a maximal wall-normal velocity and the vortices produce positive wall-
normal velocity. Aligned black lambdas mark where these conditions are met. The
conditions shown in figure 32 correspond to oblique and H-type transition, with twice
the streamwise scale of the oblique waves compared to K-type transition and the
spanwise wavelength of the vortices halved (cf. figure 31c,d). The staggered Λ-vortices
are marked using the same criteria as in figure 32(a). Note that the appearing patterns
of Λ-vortices in the three transition scenarios can be inferred without the use of any
TS-waves. In oblique transition the present TS-wave ((2, 0) mode) has low amplitude.
In calculations of the other scenarios by Laurien & Kleiser (1989) and Krist & Zang
(1986) we find that the amplitude of the TS-wave is below those of the oblique waves
and the streamwise vortices at the late transition state. PIV measurements of the
instantaneous streamwise velocity from the three transition scenarios are compared
in figure 33. Both streaks and Λ-shapes can be observed in all three figures but the
amplitude relation between them differs.

5. Conclusions
We have performed both physical experiments and numerical simulations of oblique

transition, a transition scenario initiated by two oblique waves only. In this first ex-
periment on oblique transition in an incompressible boundary layer, blowing and
suction was used to generate the oblique waves. Hot-wire measurements as well as
flow visualizations with a laser technique were used to analyse the physical flow.
The experiment verified earlier computational and theoretical results. The nonlinear
interaction of the oblique waves generates streamwise vortices. The lift-up mecha-
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Figure 33. The instantaneous streamwise velocity from three transition scenarios measured with
the PIV technique. From left to right: oblique transition, H-type transition and K-type transition.
The flow direction is from the bottom to top of the figures. Both Λ-shapes and streaks can be
observed in all three scenarios.

nism associated with the vortices causes spanwise variation of the mean flow with
alternating high- and low-streamwise velocity streaks. The streaks grow downstream
in a manner consistent with the theories on non-modal growth. Efforts were made
to closely model the experiment in the numerical code and five different methods
for disturbance generation were compared. They all produced qualitatively similar
transition scenarios but important differences were also found. The closest agreement
with the disturbance generated by the experimental device was found when we used
a blowing and suction technique, where the amplitude of the wall-normal velocity
changed stepwise in the spanwise direction and the suction amplitude was 70% of the
blowing amplitude. The effect of a positive pressure gradient was also investigated
numerically and was found to move all stages of the transition scenario upstream.
Imposing a positive pressure gradient in the simulation decreased the initial damping
of oblique waves to better correspond to the experimental development. This resulted
in a faster growth of the streak amplitude, which was also in agreement with the
experiment, but the computed flow was in this case found to reach a turbulent stage
upstream of the corresponding stage in the experiment. At the late stages of transi-
tion we identified high shear layers riding on top of vortex pairs forming the legs of
Λ-shaped structures. The positions of the Λ-shaped vortex pairs coincided with the
appearance of urms peaks as well as high-frequency oscillations in the experimental
time traces. The flow structures observed in the late stage of transition were very
similar to those reported by both numerical and experimental investigators of K- and
H-type transition. These similarities are explained by the common feature of all three
transition scenarios, namely oblique waves and streamwise vortices.

The authors greatly acknowledge the contributions of all colleagues inspiring this
work with discussions, especially Peter Schmid for calculating the maximum resonance
for Blasius boundary layers. We also wish to thank the technical staff at DLR for
the assistance during the experiments. The computational par of this work has been
supported by TFR (Swedish Research Council for Engineering Sciences).
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